Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.393
Filtrar
1.
Science ; 381(6664): 1286, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733842

RESUMO

Shifting pools of antigen can influence pregnancy-induced immune tolerance.


Assuntos
Quimerismo , Feto , Tolerância Imunológica , Troca Materno-Fetal , Criança , Feminino , Humanos , Gravidez , Troca Materno-Fetal/imunologia , Antígenos/imunologia , Feto/citologia , Feto/imunologia
2.
Science ; 381(6664): 1324-1330, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733857

RESUMO

Pregnancy confers partner-specific protection against complications in future pregnancy that parallel persistence of fetal microchimeric cells (FMcs) in mothers after parturition. We show that preexisting FMcs become displaced by new FMcs during pregnancy and that FMc tonic stimulation is essential for expansion of protective fetal-specific forkhead box P3 (FOXP3)-positive regulatory T cells (Treg cells). Maternal microchimeric cells and accumulation of Treg cells with noninherited maternal antigen (NIMA) specificity are similarly overturned in daughters after pregnancy, highlighting a fixed microchimeric cell niche. Whereas NIMA-specific tolerance is functionally erased by pregnancy, partner-specific resiliency against pregnancy complications persists in mothers despite paternity changes in intervening pregnancy. Persistent fetal tolerance reflects FOXP3 expression plasticity, which allows mothers to more durably remember their babies, whereas daughters forget their mothers with new pregnancy-imprinted immunological memories.


Assuntos
Quimerismo , Feto , Tolerância Imunológica , Memória Imunológica , Troca Materno-Fetal , Gravidez , Animais , Feminino , Camundongos , Gravidez/imunologia , Antígenos/imunologia , Plasticidade Celular , Feto/citologia , Feto/imunologia , Fatores de Transcrição Forkhead/imunologia , Troca Materno-Fetal/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia
4.
Clin Lab ; 69(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057931

RESUMO

BACKGROUND: Anti-s is a rare alloantibody, and the reported cases of hemolytic disease of the fetus and newborn (HDFN) caused by anti-s are limited to non-Asian populations. METHODS: Here, we report the case of a Chinese woman with a history of multiple pregnancies who developed an alloantibody with anti-s specificity. RESULTS: Her newborn developed HDFN caused by anti-s but the clinical symptoms were not serious. After supportive treatment and bilirubin light phototherapy, the baby was discharged with a good prognosis. CONCLUSIONS: This is the first reported case of anti-s-induced HDFN in a Chinese patient, highlighting the need for further research in the Asian population.


Assuntos
Antígenos de Grupos Sanguíneos , População do Leste Asiático , Eritroblastose Fetal , Isoanticorpos , Feminino , Humanos , Recém-Nascido , Gravidez , Eritroblastose Fetal/diagnóstico , Eritroblastose Fetal/etiologia , Eritroblastose Fetal/imunologia , Eritroblastose Fetal/terapia , Feto/imunologia , Hemólise/imunologia , Isoanticorpos/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Fototerapia
5.
Nature ; 613(7945): 639-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697862

RESUMO

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Assuntos
Biomassa , Contaminação por DNA , Feto , Microbiota , Animais , Feminino , Humanos , Gravidez , Líquido Amniótico/imunologia , Líquido Amniótico/microbiologia , Mamíferos , Microbiota/genética , Placenta/imunologia , Placenta/microbiologia , Feto/imunologia , Feto/microbiologia , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 119(49): e2212548119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442114

RESUMO

Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.


Assuntos
Linfócitos T CD8-Positivos , Feto , Imunidade , Diferenciação Celular , Escolaridade , Epigenômica , Feto/imunologia , Feto/microbiologia
7.
Proc Natl Acad Sci U S A ; 119(35): e2123267119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994660

RESUMO

The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.


Assuntos
Interleucina-33 , Placenta , Placentação , Útero , Animais , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/crescimento & desenvolvimento , Decídua/imunologia , Feminino , Feto/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/deficiência , Interleucina-33/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Placenta/imunologia , Placenta/metabolismo , Gravidez , Útero/irrigação sanguínea , Útero/crescimento & desenvolvimento , Útero/imunologia , Útero/metabolismo
8.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35050308

RESUMO

Maintenance of a healthy pregnancy is reliant on a successful balance between the fetal and maternal immune systems. Although the maternal mechanisms responsible have been well studied, those used by the fetal immune system remain poorly understood. Using suspension mass cytometry and various imaging modalities, we report a complex immune system within the mid-gestation (17-23 weeks) human placental villi (PV). Consistent with recent reports in other fetal organs, T cells with memory phenotypes, although rare in abundance, were detected within the PV tissue and vasculature. Moreover, we determined that T cells isolated from PV samples may be more proliferative after T cell receptor stimulation than adult T cells at baseline. Collectively, we identified multiple subtypes of fetal immune cells within the PV and specifically highlight the enhanced proliferative capacity of fetal PV T cells.


Assuntos
Vilosidades Coriônicas/imunologia , Placenta/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Vilosidades Coriônicas/metabolismo , Feminino , Feto/imunologia , Feto/metabolismo , Citometria de Fluxo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células T de Memória/citologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Segundo Trimestre da Gravidez , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Análise de Célula Única/métodos , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34604909

RESUMO

The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.


Assuntos
Feto , Citometria de Fluxo , Pele , Linfócitos T , Adulto , Feminino , Feto/citologia , Feto/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/citologia , Pele/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
10.
Cells ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944105

RESUMO

Emerging evidence indicates that perinatal infection and inflammation can influence the developing immune system and may ultimately affect long-term health and disease outcomes in offspring by perturbing tissue and immune homeostasis. We posit that perinatal inflammation influences immune outcomes in offspring by perturbing (1) the development and function of fetal-derived immune cells that regulate tissue development and homeostasis, and (2) the establishment and function of developing hematopoietic stem cells (HSCs) that continually generate immune cells across the lifespan. To disentangle the complexities of these interlinked systems, we propose the cochlea as an ideal model tissue to investigate how perinatal infection affects immune, tissue, and stem cell development. The cochlea contains complex tissue architecture and a rich immune milieu that is established during early life. A wide range of congenital infections cause cochlea dysfunction and sensorineural hearing loss (SNHL), likely attributable to early life inflammation. Furthermore, we show that both immune cells and bone marrow hematopoietic progenitors can be simultaneously analyzed within neonatal cochlear samples. Future work investigating the pathogenesis of SNHL in the context of congenital infection will therefore provide critical information on how perinatal inflammation drives disease susceptibility in offspring.


Assuntos
Cóclea/patologia , Hematopoese , Sistema Imunitário/crescimento & desenvolvimento , Inflamação/patologia , Animais , Feto/imunologia , Perda Auditiva Neurossensorial/imunologia , Humanos
11.
Front Immunol ; 12: 758281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745133

RESUMO

The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.


Assuntos
Feto/imunologia , Tolerância Imunológica/imunologia , Macrófagos/fisiologia , Gravidez/imunologia , Trofoblastos/fisiologia , Animais , Comunicação Celular , Movimento Celular , Microambiente Celular , Citocinas/fisiologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Trofoblastos/classificação , Trofoblastos/citologia , Trofoblastos/imunologia
12.
Front Immunol ; 12: 771054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745147

RESUMO

The placenta is a fetal-derived organ whose function is crucial for both maternal and fetal health. The human placenta contains a population of fetal macrophages termed Hofbauer cells. These macrophages play diverse roles, aiding in placental development, function and defence. The outer layer of the human placenta is formed by syncytiotrophoblast cells, that fuse to form the syncytium. Adhered to the syncytium at sites of damage, on the maternal side of the placenta, is a population of macrophages termed placenta associated maternal macrophages (PAMM1a). Here we discuss recent developments that have led to renewed insight into our understanding of the ontogeny, phenotype and function of placental macrophages. Finally, we discuss how the application of new technologies within placental research are helping us to further understand these cells.


Assuntos
Desenvolvimento Fetal/imunologia , Feto/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Placenta/imunologia , Animais , Movimento Celular/imunologia , Movimento Celular/fisiologia , Vilosidades Coriônicas/imunologia , Vilosidades Coriônicas/metabolismo , Feminino , Feto/citologia , Feto/fisiologia , Receptor 2 de Folato/imunologia , Receptor 2 de Folato/metabolismo , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/fisiologia , Fagocitose/imunologia , Fagocitose/fisiologia , Placenta/citologia , Placenta/fisiologia , Gravidez
13.
Front Immunol ; 12: 735564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777345

RESUMO

Pregnancy after renal transplantation is associated with an increased risk of complications. While a delicately balanced uterine immune system is essential for a successful pregnancy, little is known about the uterine immune environment of pregnant kidney transplant recipients. Moreover, children born to kidney transplant recipients are exposed in utero to immunosuppressive drugs, with possible consequences for neonatal outcomes. Here, we defined the effects of kidney transplantation on the immune cell composition during pregnancy with a cohort of kidney transplant recipients as well as healthy controls with uncomplicated pregnancies. Maternal immune cells from peripheral blood were collected during pregnancy as well as from decidua and cord blood obtained after delivery. Multiparameter flow cytometry was used to identify and characterize populations of cells. While systemic immune cell frequencies were altered in kidney transplant patients, immune cell dynamics over the course of pregnancy were largely similar to healthy women. In the decidua of women with a kidney transplant, we observed a decreased frequency of HLA-DR+ Treg, particularly in those treated with tacrolimus versus those that were treated with azathioprine next to tacrolimus, or with azathioprine alone. In addition, both the innate and adaptive neonatal immune system of children born to kidney transplant recipients was significantly altered compared to neonates born from uncomplicated pregnancies. Overall, our findings indicate a significant and distinct impact on the maternal systemic, uterine, and neonatal immune cell composition in pregnant kidney transplant recipients, which could have important consequences for the incidence of pregnancy complications, treatment decisions, and the offspring's health.


Assuntos
Decídua/efeitos dos fármacos , Feto/efeitos dos fármacos , Imunossupressores/efeitos adversos , Transplante de Rim/efeitos adversos , Subpopulações de Linfócitos/efeitos dos fármacos , Mães , Transplantados , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Decídua/imunologia , Decídua/metabolismo , Feminino , Feto/imunologia , Feto/metabolismo , Citometria de Fluxo , Humanos , Imunofenotipagem , Recém-Nascido , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Fenótipo , Gravidez , Resultado da Gravidez , Adulto Jovem
14.
Front Immunol ; 12: 744324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777357

RESUMO

Maternal-fetal immune-tolerance occurs throughout the whole gestational trimester, thus a mother can accept a genetically distinct fetus without immunological aggressive behavior. HLA-G, one of the non-classical HLA class I molecules, is restricted-expression at extravillous trophoblast. It can concordantly interact with various kinds of receptors mounted on maternally immune cells residing in the uterus (e.g. CD4+ T cells, CD8+ T cells, natural killer cells, macrophages, and dendritic cells) for maintaining immune homeostasis of the maternal-fetus interface. HLA-G is widely regarded as the pivotal protective factor for successful pregnancies. In the past 20 years, researches associated with HLA-G have been continually published. Indeed, HLA-G plays a mysterious role in the mechanism of maternal-fetal immune-tolerance. It can also be ectopically expressed on tumor cells, infected sites and other pathologic microenvironments to confer a significant local tolerance. Understanding the characteristics of HLA-G in immunologic tolerance is not only beneficial for pathological pregnancy, but also helpful to the therapy of other immune-related diseases, such as organ transplant rejection, tumor migration, and autoimmune disease. In this review, we describe the biological properties of HLA-G, then summarize our understanding of the mechanisms of fetomaternal immunologic tolerance and the difference from transplant tolerance. Furthermore, we will discuss how HLA-G contributes to the tolerogenic microenvironment during pregnancy. Finally, we hope to find some new aspects of HLA-G in fundamental research or clinical application for the future.


Assuntos
Feto/imunologia , Antígenos HLA-G/imunologia , Privilégio Imunológico/imunologia , Animais , Feminino , Humanos , Gravidez
15.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785597

RESUMO

Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.


Assuntos
Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Feto/imunologia , Antígenos HLA-C , Tolerância Imunológica , Camundongos , Placenta/imunologia , Placentação , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Receptores KIR
16.
Front Immunol ; 12: 729742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764952

RESUMO

A wealth of innate and adaptive immune cells and hormones are involved in mounting tolerance towards the fetus, a key aspect of successful reproduction. We could recently show that the specific cross talk between the pregnancy hormone progesterone and dendritic cells (DCs) is significantly engaged in the generation of CD4+ FoxP3+ regulatory T (Treg) cells while a disruption led to placental alterations and intra-uterine growth restriction. Apart from progesterone, also glucocorticoids affect immune cell functions. However, their functional relevance in the context of pregnancy still needs clarification. We developed a mouse line with a selective knockout of the glucocorticoid receptor (GR) on DCs, utilizing the cre/flox system. Reproductive outcome and maternal immune and endocrine adaptation of Balb/c-mated C57Bl/6 GRflox/floxCD11ccre/wt (mutant) females was assessed on gestation days (gd) 13.5 and 18.5. Balb/c-mated C57Bl/6 GRwt/wtCD11ccre/wt (wt) females served as controls. The number of implantation and fetal loss rate did not differ between groups. However, we identified a significant increase in fetal weight in fetuses from mutant dams. While the frequencies of CD11c+ cells remained largely similar, a decreased expression of co-stimulatory molecules was observed on DCs of mutant females on gd 13.5, along with higher frequencies of CD4+ and CD8+ Treg cells. Histomorphological and gene expression analysis revealed an increased placental volume and an improved functional placental capacity in mice lacking the GR on CD11c+ DCs. In summary, we here demonstrate that the disrupted communication between GCs and DCs favors a tolerant immune microenvironment and improves placental function and fetal development.


Assuntos
Antígenos CD11/metabolismo , Células Dendríticas/metabolismo , Desenvolvimento Fetal , Feto/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Antígenos CD11/genética , Células Dendríticas/imunologia , Feminino , Peso Fetal , Feto/imunologia , Idade Gestacional , Histocompatibilidade Materno-Fetal , Tolerância Imunológica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placentação , Gravidez , Progesterona/metabolismo , Receptores de Glucocorticoides/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia
17.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622802

RESUMO

Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation - but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3- macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation-induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.


Assuntos
Doenças Fetais/imunologia , Feto/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Nascimento Prematuro/imunologia , Adulto , Animais , Animais Recém-Nascidos , Antígeno CD11b/genética , Citocinas , Decídua/imunologia , Decídua/metabolismo , Feminino , Feto/metabolismo , Homeostase/imunologia , Humanos , Camundongos , Miométrio/imunologia , Miométrio/metabolismo , Trabalho de Parto Prematuro/imunologia , Trabalho de Parto Prematuro/metabolismo , Gravidez , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
18.
Reprod Toxicol ; 106: 42-50, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626775

RESUMO

Microplastics (MPs), which are emerging as a new type of environmental pollutants, have raised great concerns regarding their threats to human health. A successful pregnancy depends on the sophisticated regulation of the maternal-fetal immune balance, but the risks of polystyrene MP (PS-MP) exposure in early pregnancy remain unclear. In this study, we exposed the C57BL/6-mated BALB/c mice to PS-MP particles and used the flow cytometry to explore threats towards the immune system. Herein, the allogeneic mating murine model showed an elevated embryo resorption rate with a 10 µm PS-MP particle exposure during the peri-implantation period. Both the number and diameter of uterine arterioles decreased, which might reduce the uterine blood supply. Moreover, the percentage of decidual natural killer cells was reduced, whereas the helper T cells in the placenta increased. In addition, the M1/M2 ratio in macrophages reversed significantly to a dominant M2-subtype. Lastly, the cytokine secretion shifted towards an immunosuppressive state. Overall, our results demonstrated that PS-MPs have the potential to cause adverse effects on pregnancy outcomes via immune disturbance, providing new insights into the study of reproductive toxicity of MP particles in the human body.


Assuntos
Perda do Embrião/induzido quimicamente , Feto/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Microplásticos/toxicidade , Placenta/efeitos dos fármacos , Poliestirenos/toxicidade , Animais , Citocinas/análise , Feminino , Feto/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/imunologia , Gravidez
19.
J Immunol ; 207(10): 2433-2444, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34663619

RESUMO

Throughout gestation, the maternal immune system is tightly modulated to allow growth of a semiallogeneic fetus. During the third trimester, the maternal immune system shifts to a proinflammatory phenotype in preparation for labor. What induces this shift remains unclear. Cell-free fetal DNA (cffDNA) is shed by the placenta and enters maternal circulation throughout pregnancy. Levels of cffDNA are increased as gestation progresses and peak before labor, coinciding with a shift to proinflammatory maternal immunity. Furthermore, cffDNA is abnormally elevated in plasma from women with complications of pregnancy, including preterm labor. Given the changes in maternal immunity at the end of pregnancy and the role of sterile inflammation in the pathophysiology of spontaneous preterm birth, we hypothesized that cffDNA can act as a damage-associated molecular pattern inducing an inflammatory cytokine response that promotes hallmarks of parturition. To test this hypothesis, we stimulated human maternal leukocytes with cffDNA from primary term cytotrophoblasts or maternal plasma and observed significant IL-1ß and CXCL10 secretion, which coincides with phosphorylation of IFN regulatory factor 3 and caspase-1 cleavage. We then show that human maternal monocytes are crucial for the immune response to cffDNA and can activate bystander T cells to secrete proinflammatory IFN-γ and granzyme B. Lastly, we find that the monocyte response to cffDNA leads to vascular endothelium activation, induction of myometrial contractility, and PGE2 release in vitro. Our results suggest that the immune response to cffDNA can promote key features of the parturition cascade, which has physiologic consequences relevant to the timing of labor.


Assuntos
Ácidos Nucleicos Livres/imunologia , Feto/imunologia , Monócitos/imunologia , Parto/imunologia , Trofoblastos/imunologia , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...